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Abstract

This study investigated the ability to develop

regression models to predict the number of source lines of

code (BLOC) and the degree of correlation between function

points and the number of BLOC. Since software size -- or

the number of lines of code (LOC) -- is considered to be

the primary software cost driver, accurate software size

estimates are critical because of the growing importance of

software in today's Department of Defense (DoD) weapon

system.

For the regression analysis, four sizing data bases,

containing various functional (independent) variables, were

used. These variables included complexity, reliability, the

program's quality of specification, etc. Regression analysis

for each data base was performed with the goal of deriving

an optimal model to predict BLOC. Linear form and nonlinear

transform. of the independent variables were used in the

analysis. Of the three data bases containing complexity,

the squared exponential transform of the variable was

statistically significant in two. The best model found was

for the Ballistic lissile Office (11O) data base. The

coefficient of correlation was .9109 for the variables

INPTLOG (the log of the number of program inputs) and

OUTPTLOG (the log of the number of program outputs).
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For the function point analysis, the variables of

number of inputs, outputs, and interfaces (from the BHO

data base) vere used to apply Albrecht and Gaffney's

methodology to investigate the correlation of function

points to software size. No correlation for this

particular data base could be found. More data is

needed before further research can be accomplished.
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THE APPLICATION OF REGRESSION-BASED AND FUNCTION POINT

SOFTWARE SIZING TECHNIQUES TO AIR FORCE PROGRAMS

I. Introduction

This chapter provides a summary of the research.

First, the issue of rising software costs and its importance

to the Department of Defense (DoD) is explained. Second,

the specific problem of estimating the size of a software

development effort is addressed. Next, the scope of the

study is described and pertinent terms are defined.

Finally, the specific research questions which this thesis

will answer are cited.

General Issue

The increasing complexity of newly developed weapon

systems is partially a function of the computer technology

embedded in their subsystems. That Is,

Virtually every system in the current and planned
inventory makes extensive use of computer technology.
Computers control the targeting and flight of missiles,
coordinate and control sophisticated systems within
high performance aircraft, and integrate the complex
activities of battlefield command. Consequently,
software has become the dominant factor in military
systems 120:521.

The Army Science Board in a 1983 study dealing with

acquiring Army software also noted that

- . m m - m i P . .. . " .1



The inventory of mission critical, embedded computers
within the DOD is expected to grow from approximately
10,000 in 1980 to over 250,000 by the end of the decade.
It is important to recognize that software will assume
an ever-increasing role in these systems. Software is
no longer merely one part of a system. It is the
integration function for the entire system, whether the
system is avionics, missile, or command and control
functions [33:Sec 2,41.

Software "has become the dominant factor" in new DoD

weapon systems because over the past two decades, computer

hardware costs have rapidly decreased, while the cost of

developing the software to support this hardware has rapidly

increased (18:1). Rather, president of a software consulting

firm, supports this observation by stating:

During the thirty-year life span of the computer
industry, the cost of computer hardware and related
equipment has dropped steeply, while its power has
increased beyond the most optimistic projections.
Paradoxically, in spite of this inexpensive powerful
hardware, software costs have escalated wildly, and
represent a large and growing element in most aerospace
and defense R&D budgets (25:37).

The increasing importance and cost of software develop-

ment efforts combined with the recent cost overruns encoun-

tered by DoD development projects have piqued the interest

of Congress in development projects' cost estimate... That is,

when Congress decides to allocate billions of dollars for new

weapon systems, the cost estimates for these weapon systems

become extremely important. As noted by the 24 May 1984

Comptroller General's Report to Congress, "The accuracy,

completeness, and timeliness of DoD's cost estimates need

to be improved to give Congress more reliable data for its

decision process" (30:i).
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Since software costs make up a large portion of a

new weapon system's development cost, a key component of

accurate, complete, and timely weapon system cost estimates

is accurate software cost estimates. Moreover, since

software size -- or the number of lines of code (LOC) -- is

considered to be the primary cost driver of a software

development effort, an accurate estimate of the software

package's size becomes extremely important. However,

Whetstone notes that

S. .the size of the software has been consistently
underestimated, thus lowering the software cost estimate
and, consequently, the overall cost estimate for the
weapon system (32:21.

The importance of software size estimates and an accurate

sizing methodology are discussed by Wheaton in her 1986

article:

Software size estimates almost always grow over the life
cycle. The amount of underestimation varies depending
on many factors; but, on the average, it is in the range
of 70 to 100 percent from contract award to project
completion. For this reason, it is Imperative that
greater efforts are applied towards obtaining more
accurate size estimates earlier in the software life
cycle 131:171.

Research Objectives

Because defense funds are being reduced, It is essential

that cost estimates of future weapon system be as accurate as

possible. A key dlement in ensuring this is to provide more

accurate predictions of software packages' sizes. According

to a paper presented at the 19th Annual DoD Cost Analysis

Symposium, the authors identified (through review and survey)

3



. .. four types of sizing methods as being representative

of the general methods used in DOD application" (14:3). The

four sizing methods cited in the paper are PERT sizing,

qualitative functional relationships, quantitative functional

relationships, and measurement techniques. Although the

authors noted that quantitative functional relationships

provided only "moderately accurate" software size estimates,

they reconmended that "research should continue to investigate

statistical relationships to estimate the size for specific

software functions* (14:5). Moreover, while Whetstone's

research failed to develop a "valid" software sizing model

using regression techniques that incorporated linear form

of the size drivers, it may be possible to develop a "valid"

equation or sizing model by using regression techniques that

consider both linear and nonlinear form of the size

drivers (Whetstone's reconmendation 12).

Thus, the primary objective of this study is to

develop equations using regression techniques (which

consider both linear and nonlinear form of the size drivers)

that relate the software's size to the software's functional

characteristics (complexity, language type, etc.). A

secondary objective is to investigate (where the data

allows) the ". . . degree of correlation between 'function

points' and the eventual 'SLOC' (source lines of code)

of the program . . .N (1:639).

4



Scope

This study attempts to develop equations that relate

functional characteristics of the software to the number

of source lines of code (quantitative functional relationship)

for the four data bases used. Three of the four data bases

were extracted from Whetstone's study and the fourth was

obtained from the Electronic System Division's Cost Analysis

Office (KSD/ACC), Air Force System Command (AFSC). While

Whetstone's research limited itself to regression techniques

involving only linear form of the independent variables,

this study will develop size estimating equations based upon

nonlinear as well as linear form of the independent

variables. Moreover, this study will investigate the

ability of Albrecht and Gaffney's function point methodology

to predict the number of source lines of code for the

applicable data.

The following term are crucial to this study:

Comuter Software (or software).

A combination of associated computer programs and
computer data required to enable the computer hardware
to perform computational or control functions. Computer
software Includes that computer data defined within and
integral to a computer program but typically does not
include variable data values, such as mission data or
test data, that may be entered into the software
Immedlately preceding software execution [33:8ec 0,3).

5



Computer Software Configuration Item (CSCI). "These are

program, or group of program, which satisfy common

functions and are managed as separate entities" (8:3).

Cost Driver. "A characteristic of a system or end item that

has a large or major effect on the system's

cost" (2:Sec A,21).

Function Points. ". . . essentially, a weighted sum of the

numbers of 'inputs.' 'outputs,' 'master files,' and 'in-

quiries' provided to, or generated by, the software" (1:639).

Multiple Regression. " . . . a statistical tool that

utilizes the relation between two or more quantitative

variables so that one variable can be predicted from the

others" (22:23).

§ize Driver. Similar to a cost driver. A functional

characteristic of the software that has a major effect on

software size.

SLOC. "An instruction written in assembler or HOL (higher

order language) is often referred to as a source line of code

(SLOC) to differentiate it from a machine instruction" (6:3).

Souae Instructions.

This term includes all program instructions created by
project personnel and processed into machine code by
some combination of preprocessors, compilers, and
assemblers. It excludes coment cards and unmodified
utility software. It includes Job control language,
format statements, and data declarations. Instructions
are defined as lines of code or card images (4:591.

6



Research Questions

The two research questions addressed by the thesis are:

1. Using size drivers identified in the literature and

identified by Whetstone's study, how weil can regression

analysis relate software size to these size drivers?

2. Given the applicable data, what is the degree of

correlation between function points and the actual size

(BLOC) of the software?

Research Development

The research conducted in this thesis will follow the

chapters outlined below.

Chapter one introduces the research. It discusses the

general issue of software costing and sizing, the research

objectives, the scope of the research, the definitions that

are crucial to the study, and the research questions to be

answered.

Chapter two cites the literature pertinent to the area

of software sizing.

Chapter three discusses the methodology used to conduct

the study.

Chapter four contains the results of the statistical

analysis and function point investigation.

Finally, chapter five discusses the conclusions reached

from conducting this research and reco mends areas for

further study.

7



II. Background

Overview

This chapter presents a literature review of relevant

software costing issues and the prominent software sizing

techniques. First, software cost trends and the importance

of cost estimating software will be explained so that a better

understanding of how the software size estimate fits into the

overall software cost estimate may be obtained. Moreover,

those characteristics (attributes) of the software that have a

significant influence on development costs will be cited here.

Second, the primary cost driver of a software development

effort, software size, will be discussed. Then, the major

software sizing techniques in use today will be described

(including Albrecht and Oaffney's function point methodology).

Finally, the review will conclude with the author's coments.

Software Cost Trends

As software costs increase, the importance of the

software cost estimating process will also increase. Jensen

and Lucas describe software cost trends in the United States.

The annual cost of software in the United States in
1980 was approximately $40 billion, or about 2 percent
of the gross national product. The Department Of
Defense (DoD) software budget in 1980 was $3 billion.
The rate of software growth is considerably greater
than that of the United States economy in general. In
1982 the DoD software budget exceeded $5.5 billion
dollars, and the DoD projection for 1990 is In excess
of $32 billion (17:11.
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As Steig notes in his thesis, this $32 billion of the DoD's

budget will account for " . . . 85% of the budget spent on

computer related acquisitions . . ." (29:6). Moreover, this

figure ($32 billion) will also represent between 15% and 20%

of the DoD's total budget (20:53). Boehm projects that

Using a 12% annual growth rate, the annual U.S. software
cost would be roughly $70 billion in 1985 and $125
billion In 1990. Comparable world software costs are
difficult to calculate due to differing salary scales,
but they would be at least twice this high: over $140
billion in 1985 and over $250 billion in 1990. Clearly,
these costs are sufficiently large to merit serious
efforts to understand and control them [5:331.

Although software's increasing importance in defense

system applications has been recognized, rampant cost overruns

associated with software projects are not unusual. Steig

notes:

Cost model developers have concluded that despite the
progress made to date, a need for more accurate cost
estimating results continues to exist within the
software industry. The state-of-the-art of software
cost estimating is only mediocre. The best software
cost estimating models are only within 20% of the
actual, and they do that in only 70% of their
predictions [29:71.

Why are software development efforts difficult to

predict? In a course handout entitled, *Software Ungineering

Project Management," Computer Rconomics, Inc. cites the

following reasons why software efforts are difficult to

estimate:

a) Over optimism
b) Difficulty of scoping the Job
c) Conflicting goals
d) Conflicting definitions
a) End products may not be seen for a long

time 111:8sc 1,7.
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Moreover, Barry Boehm relates that a person

. . . can't estimate the cost of producing 100,000
source Instructions of software as accurately as
we can estimate the cost of producing 100,000 aspirin
tablets . . . (4:321.

The reasons for this are:

Source instructions are not a uniform commodity, nor
are they the essence of the desired product.
Software requires the creativity and cooperation of
human beings, whose individual and group behavior are
generally hard to predict. -
Software has a much smaller base of relevant quantita-
tive historical experience, and it is hard to add to the
base by performing small controlled experiments (4:321.

Thus, in order to better recognize and control these

estimating problems, an understanding of the importance of

the software cost estimating process is needed.

Estimating Software Cost

The difficulty and importance of the software cost

estimating process is noted by Jensen. He states that

Software development has been characterized by severe
schedule slippage, cost overrun and the inability of the
developer to estimate the resources and schedule required
early in the requirements analysis and functional design
phase when critical investment decisions must be made.
This estimation difficulty has emerged as one of today's
most critical development problem [16:11.

Boehm also attests to the importance of software cost

estimation by stating that software cost estimates "provide

the vital link between the general concepts and techniques

of economic analysis and the particular world of software

engineering" (4:30). Software cost estimating helps deter-

mine the cost effectiveness of a software development effort.

Moreover, Boehm describes the problems that software projects

10
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experience without an accurate cost-estimation capability:

1. Software project personnel have no firm basis for
telling a manager, customer or salesperson that their
proposed budget and schedule are unrealistic. This
leads to . . . the inevitable overrun and performance
compromises as a consequence.
2. Software analysts have no firm basis for making
realistic hardware-software tradeoff analyses during
the systems design phase. This often leads to a design
in which the hardware cost is decreased at the expense
of an even larger increase in the software cost.
3. Project managers have no firm basis for determining
how much time and effort each software phase and
activity should take. This leaves managers with no
way to tell whether or not the software is proceeding
according to plan (4:301.

As Whetstone notes, "because of these factors, the cost

analyst will constantly be faced with a challenge to

accurately estimate the costs of software" (32:11).

Understanding the importance of the software estimating

process is necessary. However, it is equally important to

recognize the cost drivers of a software development effort.

For example, the COCOHO parametric cost model recognizes

thousands of delivered source instructions (KDSI) along with

16 software attributes (partitioned into the four categories

of product, computer, personnel, and project) as the main

drivers of cost. Another parametric model, the RCA PRICK-S

model, uses SLOC, software application, resources, and

software complexity as the primary inputs (cost drivers)

to the model (8:12).

In a thesis completed at the Naval Postgraduate School,

Park cites the following about cost attribute factors:

Stanley (Ref. 101 defines two major areas of software
cost drivers: project specific factors and organization

11



dependent factors. Boehm (Ref. 91 identifies five
factors which closely match Stanley's. Size attributes,
program attributes and computer attributes fall into
Stanley's project specific factors. Personnel
attributes and project attributes fall Into Stanley's
organization dependent factors. Wolverton [Ref. 121
suggests that top-level characteristics are parameters
which can be classified into software structural
parameters and project financial parameters.
Software structural parameters may be divided into
size, program attributes, hardware attributes, project
attributes, and environmental attributes. Project
financial parameters are divided into direct labor
charges, overhead, other direct charges, general and
administrative expense, and fee. Bruce and Pederson
(Ref. 131 divide cost drivers into four categories:
requirement factors, product factors, process factors
and resource factors [23:24-25].

In a Rand study prepared for the United States Air

Force, the author groups the input parameters (used as the

independent or explanatory variables in a software cost

model) into three characteristic classes:

of the software itself, of the environment within
which the software is used or was developed, and
associated with the functions that the software
performs. Examples of each follow.

Software Characteristics:
Size (number of instructions)
Type (operating, support, applications)
Application category (business, scientific, avionics)
Complexity/Difficulty
Quality
Language

Environmental Characteristics:
Operation Environment

Hardware characteristics
Memory size
Speed

System Architecture
Development Environment

Personnel
Qualification
Experience with language
Experience with hardware

Development process

12



Development time
Programming practices
Stability of design/requirements
Concurrent hardware development
Target and host computer not the same
Access to development computer
Ixtent of documentation

Functional Characteristics:
Number of targets tracked
Number of flight modes (19:14-15).

Although different studies and estimating models may

cite and use different attributes of a software development

effort as cost dxIvers, there still exist many similarities

between lists of cost drivers. Moreover, most software cost

models in use today recognize software size or the number of

source lines of code (SLOC) as the primary cost driver of

software development.

Software Size

Many sources cite software size as the primary driver

of cost for a software development effort. Joseph Fox notes

that the size of the software package is the most important

driver of development costs. In his book, Software and

it Development Fox explains that "the difficulty of

software development rises nonlinearly with the size of the

program to be written" (9:242). Garvey and Powell from Mitre

Corporation state that *the size of the software system is

typically the critical source of uncertainty, and has

historically been the most significant driver of cost"

(12:76). In his thesis, Park cites the following:

13



In software estimating models, software size is the
key parameter influencing cost. All the proven
estimating techniques begin with an estimate of the size
of the software package and then at various levels
of sophistication produce an estimate of cost or time
based on size and calculated or derived productivity
factors (23:101.

In a paper written for The Journal of Parametrics, Richard

Reese and Jim Tamulevicz state:

The most popular measure of software size Is the number
of lines of code. The estimation of the number of lines
of code is important since most cost estimating tools
base their projected estimate upon this number. There
are many other parameters used in conjunction with
various cost estimating tools including complexity,
personnel capabilities, and reliability requirements of
the system to name a few. However, the number of lines
of source code is the most important factor. A poor
lines of code estimate can result in a bad estimate of
of the total project effort E26:351.

Boehm also recognizes the importance of software size:

The biggest difficulty in using today's algorithmic
software cost models Is the problem of providing sound
sizing estimates. Virtually every model requires an
estimate of the number of source or object instructions
to be developed, and this is an extremely difficult
quantity to determine In advance [3:171.

While software size is recognized as the most important

cost driver of software development, defining size and

developing sizing techniques are not *clear cut" tasks.

Software size Is usually considered a "measure of the

magnitude of a software product with common units of measure

being lines of source code" (21:A-31520).

Lines of source code (or SLOC) as a measure of size is

preferred (by most software cost modelers) to the number of

machine instructions because

14



S. .the numbez of machine language instructions is
affected by the function of the language and the
efficiency of the compiler. If compensation is not made
for these factors it is possible for a single source
program to be responsible for different numbers of
machine language instructions simply because a different
compiler is used (26:36).

Wheaton states the same reasons for not using machine

language instructions to estimate software size.

Some of the current models define the effort/size
relationship on the basis of object or machine language
instructions (MLI). The use of MLI for estimating the
size of software Is not reco mended, because it is best
to consider lines of code as units of effort which
comprise the total software development effort. This
is not possible with MLI as they are a function of the
language and compiler efficiency, and not directly
related to effort. Using MLI does not provide a
consistent basis for measuring effort, since the same
source program may generate different numbers of object
instructions depending on the compiler [31:17].

However, the term "size" in many sizing efforts does not

carry the same meaning. As Dekker and Bosch note in their

study,

First of all one can measure size in term of object
instructions or in term of source instructions.
Secondly, it is not always clear which instructions
should be included when measuring size. Some authors
count only delivered instructions, others count test
software too, which is not delivered (6:61.

Graver et al. discuss the types of code to be considered when

measuring the size of a software project:

Throwaway code--code written and used for the develop-
ment of the delivered programa, but not itself
delivered.

Converted code--code taken from earlier programs but
adapted in detail for this development.

Off-the-shelf code--code taken from earlier programs
without adaptation.

15



Computer data--code that supplies values for variables
in the program (such as DATA statements in FORTRAN
programs).

Comment statements--code intended to be read by people
and not the computer [13:143.

Developing a sizing technique can be as difficult as

defining software size. Why is software sizing difficult?

Because, it must be done early in the development phase, when

"requirements are neither firm nor fully defined, and the

system architecture is volatile" (28:3). Moreover, "past

performance data is often lacking and past experience may not

be applicable" (28:3).

Software Sizing Techniaues

Since the objective of this study is to develop

software sizing equations, it is appropriate to describe

some of the existing sizing techniques in use today.

Reese and Tasulevicz examine several sizing techniques

which include:

a) PERT sizing
b) Albrecht's Function Points
c) Data Base Analogy
d) Parametric Sizing Tools 126:38).

However, Ferens, in a software sizing paper presented at the

1988 National Aerospace and Electronics Conference (NANCON),

notes that f. . . there are various schema for categorizing

models such as those used for software sizing" (7:1). Thus,

Ferens divides software sizing techniques into five classes

(based upon his own research): expert Judgement models (e.g..

PERT sizing), analogy models, parametric models, function
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point models, and regression-based models (7:1). Although

Ferens notes five categories of sizing techniques, four of

the five overlap Reese and Tamulevicz's list of sizing

techniques. All five categories of sizing techniques will

be briefly described below.

Expert Judgement Models. These are models that are

based upon experts' "opinions." That is, "one or more

experts are consulted for their ideas regarding the size of a

program or factors which affect software size" (7:2). These

sizing models can be used as stand-alone models; however,

expert Judgement techniques are usually used in conjunction

with one or more of the other techniques. Ferens cites

an excellent example: .... expert Judgement could be used

to determine the inputs for a regression-based model" (7:2).

The prominent expert Judgement sizihg technique is the

Program Evaluation and Review Technique (PERT). PERT sizing

is based on the assumption that the experts (software

engineers) can provide realistic size estimates for new

projects based on prior experience. "PERT sizing uses a sta-

tistical approach to estimate the size of a program" (26:38).

The development effort is first broken down into components

(separate blocks of code based on the function performed).

Then, a most likely size estimate as well as upper and

lower bound estimates and standard deviations are calculated

for each component. The three values are then "averaged"

for each component. Finally, the component estimates are
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summed to obtain a total estimate (26:39). The equations

used in this technique are

3(i) = (a(i) + 4m(i) + b(1)1/6 (1)

S(i) (b(i) - a(1)1/6 (2)

where

B(I) - the estimated size of the software component
a(i) - the lowest possible size of the software

component
m(i) - the most likely size of the component
b(i) - the highest possible size of the component
S(i) a the standard deviation (26:391

As Reese and Tamulevicz note, *a basic problem with PERT

sizing Is the assumption that the estimates are unbiased

toward either underestimation or overestimation" (26:39).

However, in reality, ". . . the m(i)'s cluster toward the

lower limit resulting in an underestimation" (26:39).

Another expert Judgement technique described by Ferens

Is the Software Sizing Model (SSM) developed by Bozoki.

SSM Is a statistical method that generates component sizes,

total project size, and standard deviations. SSM inputs

(each requiring expert opinion) are: pairwise data, ranking

data, sorting data, and PERT sizing data (7:2). Reese and

Tamulevicz describe the SS:

The relative sizes of the components are estimated based
upon four input data sets. These data sets Include
information describing pairwise, ranking, sorting, and
PRT sizing data. The pairwise data consists of the
selection of the larger of two modules as solicited by
SS. The ranking process simply asks the user to rank
the modules by size. Sorting involves the assignment of
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each module to a specific size range as provided by SSM.
PERT sizing uses the PERT sizing technique . . .
126:441.

The primary advantage of expert Judgement models is that

they usually do not rely on historical data, thus, making

these models 0. . . useful for new program for which

historical precedents do not exist" (7:3). Moreover, these

models are also useful early in program development when

data Is scarce.

However, Ferens notes that these models do have

drawbacks:

Expert Judgement models are highly dependent on personal
opinions, which ay be subjective and biased. Also,
finding a true "expert" may be difficult; even the
assessments of knowledgeable personnel are sometimes
mere guesses [7:31.

Data Base Analogy Models. A different approach to the

sizing problem involves breaking down a software development

project into components (a functional group of code) and then

comparing these components with components of a similar

existing software product.

Ferens describes a simple equation for analogy

estimation:

S = F x (Size of Similar Packages) (3)

"where 13o is size (usually in SLOC) and IF' is a factor

determined by experience or politics" (7:1). While Ferens

notes that the "F" factor is difficult to determine, Reese

and Tamulevicz consider three attributes of a software
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component's function which would facilitate the comparison

process (facilitate the determination of the O" factor

described by Ferens). The three attributes of the

component's function are: complexity, application environ-

ment, and the extensiveness of project requirements (26:41).

Reese and Tamulevicz discuss these attributes:

The difference in complexity can result in a
significant variation in amount of effort. Complexity
issues include the accuracy or precision of the outputs,
the amount of complexity within and without the system,
and the required reliability of the system.

Differences in development and application environ-
ments will affect the size of the software. For
example, the number and quality of development tools
my differ resulting in a disparity of effort required.
Also, the inherent problem of mobile applications
are different from that of a fixed environment.

The project's requirements will have a significant
Impact when comparing components. There my be
differences in the number and types of interfaces, the
extent of exception handling required, or the size of
the supporting data base. These and other factors need
to be considered when estimating size based upon
previous work (26:411.

One example of an analogy model is Aerospace

Corporation's Software Size Estimator (S53). According to

Ferens, the SS model contains a historical data base

consisting of space system software projects. A user of the

model would input software type (spacecraft telemetry, for

example) and an assessment of the software's complexity.

Then, 583 would search its historical data base for similar

program and compute a "probable size estimate" for

the proposed project based on the similar programs found in

the data base (7:2).
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The advantages in using analogy models are:

. . the estimate is based on actual programs for
which historical data exists. They are also useful
early in a program because minimal input data is
required 17:21.

Moreover, analogy models allow "the mapping of functional

requirements to module size" and '. . . provides an accurate

baseline to size new projects" (26:41).

Although this software sizing technique is very useful,

it is not without its disadvantages . This technique is very

time consuming. Also, while relying heavily upon historical

data is an advantage to this technique, it can also be a

disadvantage. That is, historical data may not exist, may

be unavailable, may be inaccurate, or It may be incomplete

(26:42). Reifer explains that "most experienced engineers

and managers in the industry put very little confidence

in the sizing estimates developed . . ." by this technique

(27:1).

Parametric Models. "These models use input parameters

consisting of numerical or descriptive values of selected

program attributes" (7:3). The idea of parametric sizing

methods is an "offshoot" of software parametric cost

estimating techniques (COCOMO or PRICB-S, for example).

One example of a parametric sizing model is the RCA

PRICS Sizer (SZ) model discussed by Ferens, Reese, and

Taulevicz. Although there exist two versions of the model

-- one for military applications and one for commercial

applications -- to reflect differences in the nature of
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development environments, "both models incorporate infor-

mation relating to software design techniques, technical

approaches, growth requirements, Input/output functions,

and historical data" (7:4; 26:46).

Moreover, Reese and Tamulevicz note that the PRICE

Sizer model was intended to be used throughout a software

development project as a management tool. That is, the model

could be used early In the development process when very

little Information is available, or it could be used

later when more information has been obtained (26:46).

While each version of the model requires 15 or more

inputs, some of the Input parameters are similar to those

used by function point methodology. As Reese and Tamulevicz

state, fthese include the number of output pages, alpha-

numeric displays, Input streams, and output streams" (26:46).

Parametric sizing models' advantages are their objec-

tivity, efficiency, and their ability to be calibrated.

However, these sizing models also possess the "inability to

handle exceptional situations" (outstanding personnel, new

applications, etc,) and the "inability to compensate for

poor input" (26:47).

function Point Analys. Another software sizing tech-

nique is Albrecht and Gaffney's function points. This tech-

nique avoids the use of the number of lines of code altogeth-

er (this technique assumes that software size based on the

number of lines of code does not measure development
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difficulty). Function point analysis estimates the number

of functions required for program development and "any

factor which would make that function more or less difficult

to implement" (26:40). That is, the thesis of Albrecht

and Oaffney's work Is

. . . the amount of function to be provided by the
application (program) can be estimated from an
itemization of the major components of data to be used
or provided by it. Furthermore, this estimate of
function should be correlated to both the amount of
*SLOCO to be developed and the development effort
needed (1:6391.

The approach that this methodology takes is to list and

count the number of inputs (1), the number of outputs (0),

the number of inquiries (Q), the number of master files (H),

and the number of interfaces (M) 0. . . to be delivered by

the development project* (1:639). Then, based on an equation

developed by Behrens reflecting the relative value of each

function (to the user), the number of function points is

calculated. Behren's formula for the number of function

points in a software package is

F a 4(I) + 5(0) + 4(M) + 10(M) + 7(N) (4)

where each letter represents those functions that were

described above (1:647). Once the number of function points

to be delivered (or used) by the software is determined,

this number can then be correlated to SLOC. Albrecht and

Gaffney's work with 24 COBOL and PL/1 program developed the

following three equations:
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S - 118.7(M) - 6,490 (5)

8 - 73.1(M) - 4,600 (6)

8 - 53.2() + 12,773 (7)

where

8 - BLOC
F - the number of function points (1:643)

Bq (5) is the estimating equation that relates the number of

function points to COBOL BLOC, Kq (6) relates the number of

function points to PL/1 BLOC, and Nq (7) reflects the

estimating equation that relates the number of function

points to BLOC for the entire data base.

The major advantages In using function points are

discussed by Albrecht and Gaffney.

A major reason for using "function points* as a
measure is that the point counts can be developed
relatively easily In discussions with the user/customer
at an early stage of the development process. They
relate directly to user/customer requirements in a way
that Is more easily understood by the user/customer than
"BLOC."

Another major reason is the availability of needed
Information. Since it Is reasonable to expect that a
statement of basic requirements includes an itemization
of the inputs and outputs to be used and provided by the
application (program) from the user's external view, an
estimate may be validated early in the development cycle
with this approach.

A third reason Is that "function points" can be
used to develop a general measure of development
productivity (e.g., "function points per work-month' or
"work-hours per function point"), that my be used to
demonstrate productivity trends [1:639).

However, as noted by Ferens, Reese, and Tamulevicz,

function point applicability outside of the business/data
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processing realm is questionable. Its applicability is

highly uncertain with respect to real-time applications,

especially command and control systems (although the ABSET-R

software cost model attempts to adapt function point analysis

to the real-time/scientific environment) (7:3; 26:40).

Another problem with function points noted by Reese

and Tamulevicz "• • • is the lack of a standard set of

definitions for the input values. The terminology used is

sometimes unclear" (26:40).

Regression-Based Models. Regression-based sizing

models attempt to derive size estimating relationships that

relate the size of the software (the dependent variable) to

functional characteristics of the software (the independent

variables).

An example of a study that used regression analysis

to determine a software sizing model is the one conducted

by Itakura and Takayanagi. From 38 COBOL programs (batch

programs used in a banking system),

.. the authors attempted to develop a program
size estimation model by looking at the program
structure and logic, and determining the number of
lines required for each type of process 115:1041.

The best fit relationship found by Itakura and Takayanagi was

Y -810 + 310*X(1) + 1.12*X(2) + 553*X(3)

+ 5.91'X(5) + 1.62*X(7) + 99.7*X(8) (8)
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where

X(1) - the number of input files
X(2) - the number of input items
X(3) - the number of output files
X(5) - the number of reports
X(7) - the number of vertical items in reports
X(S) - the number of calculating processes

(80 steps per one calculating
process (15:105,108)

As noted by the authors, ". . . this estimation model is

specifically for our projects and cannot directly be adapted

to others . . ." (15:109).

Ferens discusses the strengths and weaknesses of

regression-based software sizing models.

Regression-based models share an advantage with analogy
models in that they are based on historical data. An
additional advantage is that they can be used for
program which do not have directly analogous program
In the historical data base, since the sizing equations
transcend the need for direct analogy. They are also
useful early in a program if the input factors are
available. However, like analogy models, regression-
based models are seldom appropriate for programs outside
of the scope of the data base from which they were
developed. . . . Another difficulty with regression-
based models is that a valid regression-based equation
should have a high correlation coefficient and a low
standard estimating error. Unfortunately, for many data
bases, this is not always possible [7:21.

Conclusion

The Importance of the software cost estimating process

is obvious. Both the size and buying power of the defense

budget have shrunk at the same time that software development

costs have increased at alarming rates. Thus, better and

more accurate methods to predict software development costs

are needed to ensure that defense funds are not overallocated
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nor underallocated. Insuring an accurate prediction of

software costs appears to hinge on the ability to accurately

predict the size of the software itself. As seen from this

review, there are many sizing models being used today.

However, there are accuracy problem with each technique

described in the review. Therefore, the objective of this

study is not to develop an "Infallible" sizing model, but to

hopefully add to existing software sizing knowledge in the

area of regression-based and function point sizing models.
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III. Methodology

Overview

The methodology that was used to carry out this study

will be described here. Initially, a thorough review of

Whetstone's thesis and the available software sizing

literature revealed that more work needed to be done In the

area of regression-based sizing techniques.

Whetstone conducted his study using linear regression

techniques. However, Putnam relates the following about

software sizing models:

Norin recommended that "... researchers should
apply non linear models of data interpretation . .
as Pietrasanta [311 states, the use of non linear
methods may not produce simple, quick-to-apply
formulas for estimating resources, but estimation of
computer resources is not a simple problem of linear
cause-effect. It is a complex function of multiple-
variable interdependence."

S. The most Important objective of estimation
research should be the production of accurate esti-
mating equations. At this time (19731, the applica-
tion of non linear methods seem to hold the greatest
promise for achieving this objective" [24:345).

Nonlinear models can be classified as intrinsically linear

or Intrinsically nonlinear. Those models that are intrin-

sically linear can, through transformations, be expressed in

linear form. Those models that are intrinsically nonlinear

cannot be so transformed. This study deals with nonlinear

models that can be transformed to a linear form.

Using three of the six data bases from Whetstone's study

[the Ballistic Missile Office data base, and the two Armament

Division data bases (airborne and ground)), a preliminary
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analysis of the size drivers was accomplished to help

identify BLOC's relationship to the size drivers (Irlividual

X-Y plots were Inspected to see if they would help reveal the

relationships that existed (linear or nonlinear)). Then,

multiple regression analysis was used to develop the

statistics of the resulting regression equations. Finally,

because It was the only data base that provided the

applicable input parameters (the number of interfaces, the

number of program Inputs, and the number of program generated

outputs), the Ballistic Missile Office (BO) data base was

used to Investigate the correlation between function points

and BLOC.

Data Descriotion

Three of the four data bases used in this study were

taken from Whetstone's research. As noted by Whetstone,

the "... data bases are all different in terms of number

of data points and functional description of the software"

(32:27).

The first and smallest data base contained data on

seven programs that are used on missile systems. These

programs were all developed by the Ballistic Missile Office

(BO), Air Force Systems Command (AFSC), and were obtained

from HO AFSC. Bach of the seven programs (or software

packages) are described by eight functional characteristics:

the number of source lines of code (BLOC), the environment in

which the program operates (airborne vs. ground-based),
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program code type (programming language), the number of

Interfaces existing between the program and other programs

and/or users, the number of program inputs, the number of

program generated outputs, programmer experience in months,

and the number of months needed to develop the

program (32:27-28).

The second and third data bases taken from Whetstone's

study were obtained from Armament Division (AD), AFSC.

Although the data originally was obtained as one 25-point

data base, Whetstone segregated the data Into two data bases

based on operational environment: a 12-point data base con-

taining all ground-based programs, and a 13-point data base

containing all airborne programs. Moreover, both data

bases are described by the same functional elements. They

are: SLOC, the number of development months, programing

language, the quality or degree of system specification

(low to high ratings), the reliability expected from

the software (low to high ratings), the function supported

by the software (missile, range, or munitions), and

the software function's degree of complexity (low to high

ratings) (32:28-29).

The last data base used in this research is an updated

version of the Electronic Systems Division (ESD) data base

that Whetstone used. The ESD/MITRE data base (its present

name) contains information on 26 software projects, 23 of

which have been completed (10:Sec 1,2). Moreover, the data
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contained in this data base were captured at the Computer

Software Configuration Item (CSCI) level (the three previous

data bases described above contain data which were captured

at the project level). Although each CSCI is described by

125 different data fields in the ZSD/MITRE data base, only

five fields were extracted to make up this study's 97-point

data base (3:Sec 3,1). The five parameters extracted that

describe each CSCI are delivered source lines of code

(DSLOC), the complexity of the CSCI's function (very low to

extra high ratings), the CSCI's reliability requirement (very

low to very high ratings), the use of modern programming

practices (MODP -- very low to very high ratings), and the

use of software tools (very low to very high ratings). For

a more detailed description of these software character-

istics and their "effort multiplier" ratings, the reader can

consult reference 4.

As noted by Whetstone, ".. . the nonquantitative

variables were quantified" (32:30). Thus, since this study

is a partial "recreation" of Whetstone's research, this

thesis will parallel Whetstone's method of quantifying the

nonquantitative independent variables. Whetstone explains:

The variables of complexity, reliability, and quality
of specification were rated . . . for each data base
by the organization which assembled the data bases.
It has therefore been assumed that the software
personnel in each of these organizations were
knowledgeable about their own data and have assigned
the correct rating to each variable. . . . The harder-
to-quantify variable of programing language was
quantified by assigning numerical values to each
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different language used . . . , per the method used by

the ARINC Research Corporation (see 1:4-16) [32;30,32).

Finally, Whetstone quantified the software's operating

environment (his method was not explained) and ". . . the

function of the system the software operated In . . .

(32:32). Table I reflects the assignment if values

determined by Whetstone which this study will use.

TABLE I

Quantification of the Nonquantitative Variables

Complexity Languages Environment Function (AD
Reliability Data Base)
Quality of

Spec

Very Low 1 1 Fortran I 1 Ground - I Missile - 1

Low - 2 Pascal 2 Air - 2 Range - 2

Nominal = 3 Assembly - 3 Space - 3 Munition =3

High - 4 Event
Driven

Very Language - 4
High = 5

Jovial = 5
Extra
High - 6 CMS - 6

PLM-86 - 7

Basic - 8

CPL 9

PL/1 10

REPRINTED FROM: (32:31)
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Multiple Regression/Function Point Analysis

MultiDle Regression. In order to answer this study's

first research question (how well can regression analysis

relate software size to the software's size drivers?),

regression analysis was used to develop a sizing model (a

model that predicts BLOC) for each data base. The

Statistical Analysis System (SAS) package (version 5.16) was

the software used that calculated the regression statistics.

The work was accomplished on a VAX 11/785 computer.

First, an analysis of each size driver was accom-

plished. Each size driver (independent variable) was

plotted against the number of BLOC (dependent variable) to

reveal any obvious statistical relationships. Meter

explains the term 'statistical relationships:"

A statistical relation, unlike a functional relation,
Is not a perfect one. In general, the observations
for a statistical relation do not fall directly on
the curve of relationship [22:25).

Next, the SAS package was used to show the strength of

the statistical relationships between the size drivers and

the number of BLOC for each data base. This was accomplished

by separately running each of the independent variables

against SLOC and then evaluating each resulting equation's

F statistic, R Square (denoted in this study as R,2), and the

independent variable's t statistic (each of these regression

statistics will be explained later in this chapter).

Then, the SAS package was used to calculate the Analysis

of Variance (AMOVA) tables and other regression statistics
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for the models being considered. The considered models were

identified by stepwise (backward) regression runs. The

statistics evaluated for each model were the R2, the

adjusted R-2, the model's F statistic, each of the included

independent variables' t statistics, and the coefficient of

variation (CV). The two diagnostics considered for each

model were multicollinearity and outlying observations (the

reader can consult reference 22 for an in-depth discussion of

the regression statistics and diagnostics that this study

considered).

The regression models were evaluated in the following

,manner:

1. R 2 (or the coefficient of multiple determination),

which measures the proportion of variation in the dependent

variable explained by the independent variables, was

considered first. Meter explains the danger in considering

R"2 alone:

A large R'2 does not necessarily Imply that the
fitted model is a useful one. For instance,
observations may have been taken at only a few
levels of the Independent variables. Despite a
high R 2 In this case, the fitted model may not
be useful because most predictions would require
extrapolations outside the region of observations
(22:2411.

Moreover, the more independent variables Included in a model,

the higher the R*2 will become. Thus, the adjusted RA2

(adjusted coefficient of multiple determination), which

reflects the explanatory value of the additional independent

variables, was also considered.
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2. The F statistic is used to decide whether or not the

hypothesized relationship between the dependent variable Y

and the set of independent variables is significant. That

is, choosing the null hypothesis that all regression

parameters equal zero implies no relationship, and choosing

the alternative hypothesis that not all the regression

parameters equal zero implies that a relationship

exists (22:240-241).

The t test compares each independent variable's t

calculated value (t(calc)I with the regression model's

associated t distribution to see which variables are

statistically significant (22:243). The F test and t test

decision rules are described in Table II.

3. The coefficient of variation was considered because

it relates the size of the standard error of the estimate to

the magnitude of the dependent variable. If estimating from

the center of the data, the model's estimate will be within

plus or minus two times the coefficient of variation (an

approximation only). This study used the guideline of a

30% to 40% coefficient of variation.

4. Since multicollinearity is present in most

"nonexpertmental" data and has significant effects on other

regression statistics, this study evaluated its effects on
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TABLE I I

F Test/t Test Decision Rules

F test (level of significance at a a .10 for this study):

If F(calc) < or - Fttable(1-a;p-1, n-p)], conclude
"cannot reject" the null hypothesis

If F(calc) > F[tableCl-a;p-1, n-p)], conclude
"reject" the null hypothesis

where:

F(calc) - Mean Square Model/Mean Square Error
n a the number of observations
p - the number of parameters in the model

t Test (level of significance at a a .20 for this study):

If tt(calc)l < or - t(1-a/2;n-p), conclude *cannot
reject" the null hypothesis (that B(M) = 0)

If It(calc)I > t(1-a/2;n-p), conclude "reject" the
null.hypothesis

the developed models. Neter describes some problem that

arise when the independent variables of a model are highly

correlated:

1. Adding or deleting an Independent variable
changes the regression coefficients.
2. The extra sum of squares associated with an
independent variable varies, depending upon which
independent variables already are included in the
model.
3. The estimated regression coefficients individually
may not be statistically significant even though a
definite statistical relation exists between the
dependent variable and the set of independent
variables [22:382-383).
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The SAS package makes available two statistics which

help determine the independent variables' degree of

correlation. The first statistic is the variance inflation

factor (VIF). Meter explains that

These factors measure how much the variance of the
estimated regression coefficients are inflated as
compared to when the independent variables are not
linearly related 122:391).

Meter further points out that a VIF greater than 10 may

indicate that multicollinearity may be influencing the

model's predictive ability, and that a major limitation of

VIFs .. . is that they cannot distinguish between several

simultaneous multicollinearities" (22:392-393).

The second statistic which evaluates multicollinearity

in models (and which is supplied by the 8A package) is the

tolerance. The tolerance is expressed as 1/VIF for each

independent variable Included in the model. Tolerance values

will fall in the following range:

0 < or = TOLERANCE < or a 1 (9)

Thus, a tolerance value close to zero implies multi-

collinearity, and a value close to one implies independence.

This study used a tolerance limit of .1 or greater for

leaving a variable in a model.

5. Finally, the outliers with respect to X and Y and

the influential outliers were considered.
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Outlying X observations were determined with the help

of leverage values (h's). Leverage values Indicate

* . . whether or not the X values for the ith
observation are outlying, because it can be shown
that h(iI) Is a measure of the distance between
the X values for the ith observation and the means
of the X values for all n observations (22:402).

Thus, 0. . . leverage values greater than 2p/nm" (where p is

the number of parameters in the model and n is the number of

X observations) '. . . are considered . . . to indicate

outlying observations with regard to the X values" (22:403).

The studentized residual (SRBSID) is evaluated to

determine outlying Y observations. The $S package

calculates these values for each dependent variable. Then,

comparing the SRNSIDs with the appropriate t-distribution,

the outlying Y observations are identified (that is, if a

Y's SRZSID is greater than t(l - significance level, n - p),

that Y observation is considered an outlier] (22:405-406).

"After identifying outlying observations with respect

to their X values and/or their Y values, the next step is to

ascertain whether or not they are influential . . ." (22:407).

What is the meaning of influential in this context? If the

ith observation is deleted, and the regression coefficients

change significantly, then the observation is influential.

The SAS package measures the Impact of the ith observation

on the model's estimated regression coefficients with the
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Cook's distance measure (or Cook's D). The guideline used

by this study to identify influential outliers was:

Cook's D > F(.5, p, n-p) (10)

Function Point Analysis. The BKO data base was the

only data base used to investigate the "degree of correlation

between 'function points' and . . . 'BLOC'" because it was

the only data base that contained the required function point

inputs (number of inputs, interfaces, and generated outputs)

(1:639). First, using Behren's formula (Eq 4 found in

Chapter II), the number of function points for each of the

seven programs was calculated. Then, the ability of

Albrecht and Gaffney's formulae (Bqs (5), (6), and (7), also

found in Chapter II) to relate the number of function points

to the number of BLOC was examined. Finally, an effort was

made to drive an equation (a data base specific equation)

relating the number of function points to the number of BLOC

using linear regression analysis.
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IV. Analysis and Results

Overview

This chapter presents the results of building a software

sizing relationship for each of the four data bases and the

results of the function point analysis. First, sizing

equations are developed and evaluated according to the

methodology discussed in Chapter III. The statistical

results of this evaluation will be presented in the following

order: the Ballistic Missile Office (BMO) data base, the

Armament Division (AD) data base -- ground systems, the AD

data base -- airborne systems, and finally the Electronic

Systems Division (BSD) data base (all data bases are listed

in Appendix A). Then, the results of the investigation into

the correlation between function polnts and the number of

SLOC for the BMO data base will be presented.

Dvloment IL tb Sizina sationL

Development of the software sizing equations began with

an analysis of each size driver. That is, each size driver

(or independent variable) was plotted against the number of

SLOC (dependent variable) to reveal any obvious statistical

relationships (these relationships had to make logical sense

before they were accepted). Then, equations that included

the significant variables were analyzed.

The BMO Data Base. As described previously, the BO

data base contains seven programs described by the variables
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source lines of code (BLOC), environment (ENV), language

type (LANG), the number of interfaces (INTF), the number of

program inputs (INPT), the number of program generated

outputs (OUTPT), programmer experience level (EXP), and the

number of. development months (DM).

Although the data set only contains seven observations,

it was decided to delete (for the regression analysis) obser-

vation #4 from the test data base because of the size of this

observation's program (number of SLOC: 112,000). That is,

observation #4 was not considered part of the population

represented by the other six observations. Moreover, while

Whetstone's study used development months (DM) as a predictor

of SLOC, this study did not consider DM because most software

cost models use SLOC as a predictor of development time. One

good example is Boehm's Intermediate COCOMO (Constructive

Cost Model), nominal effort equation for a semidetached

mode program:

(MM)nom - 3.2(KDSI)I.05] (11)

where

MM - the number of man-months
KDSI a the number of thousands of delivered

source instructions (4:57,117)

Thus, the six remaining observations' independent

variables were plotted against BLOC in an attempt to reveal

any obvious statistical relationships. After trying several

logical transformations (such as square root), it was found
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that a logarithmic transformation of INTF, INPT, and OUTPT

best fit the data (INTFLOG, INPTLOG, and OUTPTLOG). This

type of transformation makes logical sense for these

variables because it means that as the number of interfaces,

inputs, and outputs increase, the number of BLOC will also

increase, but at a decreasing rate.

An exponential transformation (square root) of EXP was

found to best fit the data. This transformation (KXPSQRT)

says that as the experience level of programmers increases,

the number of BLOC increase, but at a decreasing rate.

Expectations would dictate that as a programmer's experience

level increases, the number of SLOC needed to do a given Job

would decrease. However, experienced programmers, while more

efficient in their coding abilities, tend to Incorporate more

exception handling and error detection routines in their

code. Thus, this could actually increase the overall amount

of code written for a development effort.

Linear forms of LANG and ENV (with negative slopes) were

found to be the best for these two independent variables.

While the ARINC rankings for LANG do not allow general

interpretation of the effect of language, In this case such

interpretation is possible since the BNO data base program

are coded in assembly language or Jovial. For this data set,

a negative slope makes logical sense for LANG, because the

higher-order the language, the less lines of code needed to

get the Job done. However, a negative slope does not seem to

42 ',



make sense for ENV. Normally, software applications for

space-based systems are more complex (thus, larger in size)

than those for ground-based systems. Thus, the independent

variable ENV was not considered in the regression analysis.

The following table summarizes the results of the individual

runs for each of the variables previously described (each was

run against SLOC, the dependent variable).

TABLE III

Results of Individual Regression Models for SLOC
Using INTFLOG, INPTLOG, OUTPTLOGI ZXPSQRT, and LANG

INTFLOG: EXPSQRT:
F value: 1.6930 F value: 6.2820
R^2: 0.2974 R^2: 0.6110
t(calc): 1.3010 t(calc): 2.5060

INPTLOG: LANG:
F value: 0.1240 F value: 2.6350
RA2: 0.0396 RA2: 0.3971
t(calc): -0.3520 t(calc): -1.6230

OUTPTLOG:
F value: 0.2420 F(.90;1,4) - 4.540
RA2: 0.0748 t(.80;4) - 1.533
t(calc): 0.4920

The only two significant variables were EXPSQRT and

LANG (both variables' It(calc)l > table t - 1.533). However,

all five variables were included in a stepwise (backward)

regression run because, as Meter points out,

each of the estimated regression coefficients
individually my be statistically not significant
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even though a definite statistical relation exists
between the dependent variable and the set of
Independent variables 122:385).

Although the default level of confidence in SAS for a

backward-stepwise regression run Is .90, this study specified

a .80 level of confidence. The results of the stepwise

regression revealed a model that included INTFLOG, INPTLOG,

and OUTPTLOG (see Table IV). While the model's RA2 is

.9393 and the CV Is relatively low (41.6%), the variable

INTFLOG and the overall model are Insignificant. Moreover,

the negative coefficient for INPTLOG does not make sense.

TABLE IV

Results of Regression Model for SLOC
Using INTFLOG/IKPTLOG/OUTPTLOG

Model: SLOC - -29942.1 + 8463.9INTFLOG - 22542.3INPTLOG +
27875.2OUTPTLOG

F value: 5.1610
R 2: 0.9393 F(.90;3,2) - 9.160
ADJ R 2: 0.7573 t(.80;2) - 1.886
CV: 41.6234

t(calc):
INTFLOG: 0.6850
IMPTLOG: -3.5410

OUTPTLOG: 2.9930

That is, holding all else constant, an increase in the number

of program required Inputs means a decrease in the number of

SLOC needed. Finally, because the data base contains only

six observations and there are four parameters in this model
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(the three size drivers and the Y-intercept term), degrees

of freedom became crucial.

Thus, It was decided to run a regression model for

INPTLOG and OUTPTLOG (dropped the insignificant variable

INTFLOG). The following table contains the statistical

results of this model.

TABLE V

Results of Regression Model for BLOC
Using INPTLOG/OUTPTLOG

Model: BLOC - -17000.4 - 23287.8IKPTLOG + 30942OUTPTLOG

F value: 10.2230
R^2: 0.9109 F(.90;2,3) - 5.460
ADJ R"2: 0.8218 t(.80;3) = 1.638
CV: -35.6689

VIF:
t(calc): INPTLOG: 4.3425
INPTLOG: -4.3320 OUTPTLOG: 4.3425

OUTPTLOG: 4.4220
TOLERANCE:

Outliers w.r.t. X: INPTLOG: 0.2303
Leverage - 2p/n = 6/6 = 1 OUTPTLOG: 0.2303

no observations were found
to be outliers w.r.t. X

Influential Outliers: Outliers w.r.t. Y:
F distribution: t distribution:
F(.50;2,3) - .88100 t(.80;3) - 1.6380
COOK'S D: SREBID:
OB #1: 6.75880 no observations
OB #6: 1.57550 found

As seen in the table, both variables and the model are

significant. The model explains 91% of the variation in

BLOC, while the adjusted R*2 of .8218 means that each var-
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lable explains different sizeable "chunks" of the dependent

variable. Moreover, the model's coefficient of variation

(CV) is a respectable 35.7% (when predicting from the middle

of the data set, this model's estimate will be accurate

within.plus or minus 71.4%).

Collinearity is not a problem within the model. Both

variables' VI~s are less than ten and the tolerances are

greater than .10. Moreover, while no observations were

found to be outliers w.r.t. X or Y, observations #1 and 16

were revealed to be influential outliers (this situation Is

-possible if a variable's SRESID and leverage values are

simultaneously large). Although these two observations were

influential outliers, both were kept In the data base because

the observations are considered members of the population

represented by the data base, and the size of the data base

is critical. Finally, caution must be exercised if the model

were to be used because of INPTLOG's negative coefficient

(which was discussed earlier).

The A& Data Base -- Ground 8Stes. This data base of

12 observations contains six functional variables In addition

to the number of SLOC. They are: development months (DM),

language type (LANG), quality of program specification

(QSPKC), reliability requirement of the software (REL),

the program's (or software's) function (FUNC), and the

program's complexity factor (COMPX).
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As before, the functional (or independent) variable DM.

was not considered because number of BLOC is considered a

predictor of DM. The five remaining variables were each

plotted against BLOC to help reveal any statistical relation-

ships. The only obvious transformation was an exponential

transformation (COMPX squared -- CPXSQRD) of the program's

complexity level. The transformation CPXSQRD says that as

the complexity of a software project increases, the number

of BLOC will also increase (and at an increasing rate, so

long as B(i) > 0). The results of the individual regression

runs are shown in the following table.

TABLE VI

Results of Individual Regression Models-for BLOC
Using CPXSQRD, LANG, QBPEC, REL, and FUNC

CPXBQRD: REL:
-F value: 9.8110 F value: 0.2690
R^2: 0.4952 R*2: 0.0262
t(calc): 3.1320 t(calc): -0.5190

LANG: FUNC:
F value: 0.2470 F value: 1.4920
R^2: 0.0241 R 2: 0.1298
t(calc): -0.4970 t(calc): -1.2210

QSPEC:
F value: 0.2520 F(.90;1,10) - 3.290
R^2: 0.0246 t(.80;10) - 1.372
t(calc): -0.5020
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As shown in the table, the only significant variable was

CPXSQRD (when regressed individually against SLOC). The

major reason why only a few variables in each of these data

bases were significant is that the small number of

observations did not provide the necessary Ovariabilityw

in the data. That is, the values for each of the size

drivers do not provide enough Odifferencen to generate a

statistical relation. An excellent example from this data

base is the program's quality of specification (or OSPIC).

A look at the data base reveals nine two-values, two

three-values, and one one-value observation for QSPEC. Thus,

QSPEC was revealed to be a poor size driver for this data

base.

Regressing the five variables in a backward-stepwise

SA run revealed a significant model that included the

variables CPXSQRD and FUNC. Table VII suarizes the results

of the regression run for CPXSQRD and FUNC.

Although the model and both variables are significant,

the model is only a fair predictor of SLOC. When predicting

from the middle of the data, this model's estimate will be

accurate within plus or minus 145%. This is one indication

that an important size driver is missing from the model.

An interesting point is that although FUNC was not

individually significant, it was significant when included

in a model with CPXSQRD. As explained earlier, it Is

possible that the regression coefficients individually may
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be statistically insignificant although a statistical

relationship exists between the dependent and the set of

independent variables (22:385).

TABLE VII

Results of Regression Model for SLOC
Using CPXSQRD/FUNC

Model: SLOC - 28016.2 + 2418.SCPXSQRD - 18302.lFUNC

F value: 7.6270
R^2: 0.6289 F(.90;2,9) - 3.010
ADJ R*2: 0.5465 t(.80;9) - 1.383
CV: 77.4000

VIF:
t(calc): CPXSQRD: .99994
CPXSQRD: 3.4790 FUNC: .99994
FUNC: -1.8010

TOLERqANCE:

Outliers W.r.t. X: CPXSQRD: 1.00005
Leverage - 2p/n - 6/12 - .50 FUNC: 1.00005

no observations were found
to be outliers w.r.t. X

Outliers w.r.t. Y:
Influential Outliers: t distribution:
F distribution: t(.80;9) - 1.3830
F(.50;2,9) n .74900 BRESID:
COOK'S D: OBS #1: 2.3491
OBS 11: 1.14409 OBS #11: -1.7035

Moreover, a negative coefficient for FUNC logically makes

sense because as the function of software moves from missile

applications to munitions (from more complex to less

complex), the expectation would be a decrease in the number

of SLOC required for the application.
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A closer look at the model statistics shows that while

the two variables are almost perfectly independent, they

reduce the variation in BLOC by only 63%. However, an

adjusted R*2 of .55 mans that each variable explains

different "chunks" of the dependent variable. Moreover,

while there were no outliers w.r.t. X, observations #1 and

111 were found to be outliers w.r.t. Y (observation #1 was

also found to be an influential outlier). Both observations

were considered members of the data base's population. Thus,

the observations were kept.

The & Data Base -- Airborne Systems. This Armament

Division data base of 13 observations contains the same six

functional variables (in addition to the number of BLOC) that

the ground systems data base contains. Again, the functional

variable DM was not considered.

Plotting the remaining functional variables against

BLOC, and trying some logical transformations, revealed

exponential transformations for the program's complexity

(COKPX squared -- CPXSQRD) and reliability (REL squared --

R3LSQRD), and an inverse transformation for the program's

function (1/FUNC squared -- PVUC2INV). The transformation

for the program's function means that as the function of the

software product goes from missile systems to munitions

(thus, decreasing in complexity), the expectation is a

decrease in the lines of code required, but at a decreasing

rate (the squared transformation was explained earlier).
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Table VIII reflects the results of the Individual regression

runs.

TABLE VIII

Results of Individual Regression Models for SLOC
Using CPXSQRD, RELSQRD, FUNC2INV, LANG, and OSPEC

CPXSQRD: LANG:
F value: 10.4380 F value: 0.0400
R"2: 0.4869 R2: 0.0036
t(calc): 3.2310 t(calc): -0.2000

RELSQRD: QSPEC:
F value: 6.1220 F value: 0.5630
R2: 0.3575 R"2: 0.0487
t(calc): 2.4740 t(calc): -0.7510

FUNC2INV:
F value: 3.8440 F(.90;1,11) - 3.230
R2: 0.2590 t(.80;11) - 1.363
t(calc): 1.9610

Although only three of the five variables were

Individually significant (CPXSQRD, RZESQRD, and FUNC2INV),

all five were included in the stepwise regression run. The

backward elimination of variables resulted in the two-

variable model, CPXSQRD and QSPEC (see Table IX for the

model's regression statistics).

Although this model's CV Is relatively high (65.9,),

the model is significant beyond the 99% level of confidence,

and it explains more than two-thirds of the variation in

BLOC. However, while collineazity within the model is not a
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problem, outliers w.x.t. X and Y were Identified. Observa-

tions 11 and #6 were found to be outliers w.r.t. X, and

observations #6 and #8 were found to be outliers w.r.t. Y

(observation #6 was also the influential outlier). Since

the three observations were considered members of the

population represented by the data base, they were kept.

TABL3 IX

Results of Regression Model for BLOC
Using CPXSQRD/GBPSC

Model: BLOC - 54964.6 + 1393.1CPXBQRD - 28930.70SPZC

F value: 11.4910
R^2: 0.6968 F(.90;2110) - 2.920
ADJ R"*2t 0.6362 t(.80;10) m 1.372
CV: 65.9447

VIF:
t(calc): CPXBQRD: 1.10500
CPXBQRD: 4.6230 QBPZC: 1.10500
OSPEC: -2.6310 TLRNZ

Outliers v.r.t. X: CPXBQRD: 0.90490
Leverage a 2p/n - 6/13 *.4615 QBPzC: 0.90490
ORB #1: 1.00000
0B 16: 0.52843

Outliers w.r.t. Y:
Influential outliers: t distribution:
F distribution: t(.80;10) -1.3720
F(.50;2110) - 0.74300 BRRBID:
COOK'S D: 038 #6: 1.8469
085 #6: 1.27419 ORB 08: -1.7693
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Finally, the negative coefficient for the program's quality

of specification (QSPEC) makes sense because, as a program's

QSPRC increases (becomes more well defined), the size of the

program should decrease.

Thei D Data Base. The 97 observations that make up

this data base are described by four functional variables in

addition to the number of delivered source lines of code

(DSLOC). They are: the program's complexity (CPLX), the

program's required reliability (RLY), the level of modern

programing practices used in coding the program (MODP), and

the level of software tools used (TOOL).

Plotting each of the functional (or independent)

variables against DSLOC revealed very little. Therefore,

form of two (R3LY and CPLX) of the functional variables that

were encountered in previous data sets were used for the

individual regression runs. The results of these runs are

summarized in Table X.

As Indicated by the table, none of the variables

proved statistically significant. However, a backward-

stepwise regression was conducted using the six variables

identified in Table X. As seen in table X1, the result of

the stepvise regression run was a two-variable model

containing HODP and TOOL. Although the variables are

significant, the overall model is insignificant. Moreover,

the model only explains about 6% of the variation in BLOC,

and the coefficient of variation Is extremely high (143.88).
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TABLE X

Results of Individual Regression Models for BLOC
Using CPLX, CPLXSQRDF RELY, RELYSQRDI MODP, and TOOL

CPLX: RELYSORD:
V value: 0.1100 F value: 0.4310
R 2: 0.0012 R*2: 0.0045
t(calc): 0.3310 t(calc): -0.6570

CPLXSQRD: MODP:
F value: 0.1170 F value: 1.1190
R^,: 0.0012 R^2: 0.0149
t(calc): 0.3410 t(calc): -1.0580

RELY: TOOL:
F value: 0.2650 F value: 0.0830
R2: 0.0028 R^2: 0.0009
t(calc): -0.5150 t(calc): 0.2890

F(.90;l,95) - 2.770
t(.80;95) - 1.292

With the number of observations contained in the data

base, one would expect to be able to better explain the

dependent variable. However, an inspection of the data

reveals the same problem encountered previously -- the

independent variables do not provide enough difference (or

variability) to generate a significant statistical relation-

ship. Thus, a significant regression model could not be

developed for this data base.
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TABLE XI

Results of Regression Model for BLOC Using MODP/TOOL

Model: BLOC - 35902.1 - 20675.7MODP + 26616.9TOOL

F value: 2.2260
R*2: 0.0575 F(.90;2194) - 2.370
ADJ R 2: 0.0317 t(.80194) - 1.292
CV: 143.8834

t(calc):
MODP: -1.7140
TOOL: 1.8160

Function Point Analysis

The final portion of this study's analysis investigated

the degree of correlation between function points (as defined

by Albrecht and Gaffney) and BLOC. The BMO data base was the

only data base of the four used in this Investigation because

it was the only one that contained the required function

point inputs (or variables) -- the number of inputs, inter-

faces, and program generated outputs.

First, the number of function points for each of the

seven programs using Behren's formula was calculated.

Using observation *1 from the data base, the function point

count for this observation was calculated in the following

manner: 4(10) + 5(37) +4(0) + 10(0) + 7(14) a 323. Then,

the function point counts as calculated by Behren's formula

were input into Iqs (5), (6), and (7) of Chapter II to

determine the predicted number of source lines of code.

Using observation 01 again. the predicted BLOC (using
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Eq (7)) were calculated in the following manner:

53.2(323) + 12773 - 29957. Table XII summarizes the results

for these calculations.

TABLE XII

Comparison of Predicted and Actual BLOC Counts
Generated by Albrecht and Gaffney's Formulae

OBS Function Predicted Predicted Predicted Actual
Point BLOC BLOC BLOC BLOC
Count Using Using Using

Eq (5) Eq (6) Eq (7)

1 323 31850 19011 29957 43000

2 144 10603 05926 20434 08875

3 147 10959 06146 20593 32000

4 451 47044 28807 36766 112000

5 270 25559 15137 27137 06400

6 / 376 38141 22886 32776 13010

7 1337 152212 93135 83901 16000

A closer inspection of Table XII reveals that Albrecht

and Gaffney's formulae do a poor Job of relating function

points to the number of BLOC for this data base. There are

two possible explanations for this. First, Albrecht and

Gaffney's study was based upon COBOL and PL/1 programs.
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However, the programs in the BMO data base are coded in

assembly, Jovial, or event driven languages. Second,

Albrecht and Gaffney's study was conducted using business-

application programs, whereas, the BMO data base contains

real-time ballistic missile applications.

Finally, since Albrecht and Gaffney's formulae are data

base specific (as shown in Table XII above), it-was decided

to attempt to develop (through linear regression analysis) a

data base specific equation for the BMO data that relates

function points (FPNT) to the number of BLOC. As shown in

Table XIII, a significant relationship could not be

developed.

TABLE XIII

Results of Regression Model for FPNT

Model: SLOC - 34023.7 - 2.2575FPNT

F value: 0.0030
R"2: 0.0006 F(.90;1,5) - 4.060
ADJ R^2: -0.1992 t(.80;5) = 1.476
CV: 123.4000

t(calc):
ZXPSQRT: -0.0560
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V. Conclusions and Recommendations

Conclusions

This study's first research question posed in Chapter I

was -- Using size drivers identified in the literature and

identified by Whetstone's study, how well can regression

analysis relate software size to these size drivers?

Chapter IV answered this question for each of the four data

bases considered (Table XIV contains a summary of results

of the regression analyses).

For the BNO data base, the regression analysis revealed

that the square root of the programmers' experience level

(EXPSQRT) and language type (LANG) were the individually

significant variables. However, all five variables were

included in a backward-stepwise regression run. The model

identified by this regression run as the best predictor of

SLOC was a two-variable model containing INPTLOG and

OUTPTLOG. Both the model and the variables were significant

well beyond this study's level of confidence constraints.

Moreover, the coefficient of correlation 'R42) for this

model was .91. However, the model's coefficient of

variation (CV - 35.7) signals the model as only a fair

predictor of number of BLOC, and the negative coefficient

for INPTLOG logically does not make sense.

The AD data base was divided into two subgroups

according to operational environment -- ground programs and

airborne program. As Whetstone notes, "this was done in
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TABLE XIV

Summary of Results

Data Base Model RA 2

BMO SLOC = -17000.4 - 23287.8INPTLOG + .9109
30942OUTPTLOG

AD
Ground SLOC = 28016.2 + 2418.8CPXSQRD - .6289

18302.1FUNC

AD
Airborne SLOC = 54964.6 + 1393.1CPXSQRD - .6968

28930.7QSPEC

ESD None N/A

order to better separate the different types of software"

(32:83). The results of the ground data base indicated that

only the square of the program's complexity (CPXSQRD) was

significant in an individual regression model. However,

when all five variables were included in a backward-stepwise

regression run, the two-variable model, CPXSQRD and FUNC,

was the result.

The regression analysis performed on the airborne AD

data base revealed that the square of the program's

complexity (CPXSQRD), the square of the program's required

reliability (RELSQRD), and the inverse of the program's

function, squared (FUNC21NV) were the statistically

significant variables. However, a stepwise (backward)

regression run that included all the variables revealed
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that the statistically significant model for this data base

contained the variables CPXSQRD and QSPRC. Although the

model explains over two-thirds of the variation in the

dependent variable, the model's CV Is relatively high

(65.9%).

Lastly, the regression analysis performed on the ESD

data base revealed no significant variables. Because only

four independent variables were Investigated, a statistically

significant model could not be found for the data. Although

this data base contains 97 observations, the lack of

difference (or variability) in the values of the 97 data

points makes it almost impossible to generate significant

statistical relationships. Thus, an investigation of how

LSD's data was gathered/encoded is needed.

Overall, the best predictive model found was for the BMO

data base. The R*2 for this model is 91.9% and the adjusted

R 2 is 82.2%. However, the models that were created for each

data base are not very helpful in predicting the number of

SLOC. The main reasons for this are the relatively low R^2

values and the high CV values which indicate that other

independent variables related to SLOC are missing from the

models or that there is Just a lot of variability in SLOC

for a program. Moreover, the small number of data points

encountered for the BHO data base and the two AD data bases

cause any regression results to be somewhat suspect.
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Finally, the results of the Investigation into the

degree of correlation between function points and software

size were also presented in Chapter IV. No correlation

between function points and software size (SLOC) was found.

Recommendations

The results of this study have generated a few

suggestions for further research.

Recommendation 1. A study investigating Air Force soft-

ware data collection methods is needed. From all the

research conducted by the author, software costing and

sizing historical data is lacking. Because of software's

increasing importance, this type of study could be extremely

worthwhile.

Recommendation 2. Larger/validated-data bases with

more independent variables are needed before any further

research is accomplished (this would probably make the

results more substantial and meaningful). Once these data

bases have been located/formed, multiplicative models or

nonlinear regression techniques may produce better results.

Recommendation I. Further study is needed to investi-

gate the application of Albrecht and Gaffney's function

point methodology to Air Force programs. Because of the

real-time nature of most Air Force software products, this

investigation should include a consideration of Reifer's

ASSET-R sizing model.
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Appendix A: Thesis Data Bases

I. Ballistic Missile Office

1 43000 1 3 14 10 37 24 36

2 8875 2 3 10 6 10 8 30

3 32000 1 3 21 -- -- 54 30

4 112000 1 5 9 42 44 1 26

5 6400 1 5 7 24 25 1 26

6 13010 2 5 16 31 28 8 31

7 16000 1 4.5 18 139 131 16 29

REPRINTED FROM: (32:105)
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II. Armment Division -- 'Ground

OBS LOC D1M LA QSPIC REL Fuc COPX

1 80000 48 1.3 2 3 2 5

2 25000 48 1.3 2 3 2 3

3 10000 20 1.2 2 5 2 3

4 4000 22 1.2 2 4 2 3

5 3000 24 1 1 2 2 2

6 1400 36 8 3 4 3 4

7 15900 36 1 2 3 3 4

8 1200 36 1 3 3 3 3

9 25000 -- 1.3 2 3 2 3

10 40000 -- 1 2 3 2 5

11 5800 -- 3 2 3 2 4

12 25000 -- a 2 4 2 4

RUPRINTED FROM: (32:108)
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- - - d I i

III. Armament Division -- Airborne

0f8 LoC PM LAG OSPC RL uN COMpx

1 3000 24 2.05 3 4 1 5

2 2100 18 3 2 1 1 1

3 2000 42 3 2 3 3 2

4 16000 36 3 2 4 1 4

5 30000 24 1.3 2 5 1 4

6 60000 79 3 2 5 1 6

7 1300 22 1.2 2 3 2 3

8 16000 24 1 2 5 1 5

9 2700 22 1 2 4 2 3

10 10000 -- 3 2 3 2 1

11 9000 -- 6.8 2 5 2 4

12 17000 -- 1 2 4 1 4

13 29000 -- 1 2 4 1 4

R3PRINTSD FROM: (32:109)

64



IV. Zlectronic System Division

oBs DSLOC CPLX RELY MODP 122k

1 26200 5 5 4 3

2 15987 4 4 4 1

3 56021 4 5 4 4

4 20276 4 4 3 3

5 63944 5 4 3 1

6 47525 5 4 4 4

7 09000 5 4 1 3

8 54192 5 5 4 4

9 104090 5 5 4 4

10 71453 5 5 4 4

11 75081 6 5 4 4

12 40702 5 5 - 4

13 21502 5 5 - 4

14 14817 5 5 - 4

1s 14809 4 5 - 4

16 12774 5 5 - 4

17 14839 5 5 - 4

18 29445 5 5 - 4

19 26933 5 5 - 4

20 20547 3 3 - 4

21 23664 3 3 - 4

22 00411 4 3 - 4

23 25212 4 3 - 4

24 10991 3 5 - 4
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L

IV. Electronic Systenz Division (Continued)

088 p__ CPLX RZL HOOP TOOL

25 06450 3 5 - 4

26 32100 5 5 - 4

27 01508 3 3 - 4

28 15000 4 3 - 4

29 11000 2 4 - 4

30 01700 2 4 - 4

31 37000 4 3 - 4

32 30000 5 5 - 4

33 221990 4 5 4 5

34 116098 3 3 4 5

35 250739 4 5 5 4

36 60031 3 5 3 3

37 01280 3 5 3 3

38 09445 3 5 3 3

39 32467 3 5 3 3

40 04072 3 5 3 3

41 20901 3 5 3 3

42 11986 3 5 3 3

43 11696 3 5 3 3

44 04994 3 5 3 3

45 02035 3 5 3 3

46 08500 5 5 4 4

47 11691 5 5 4 4

48 47723 3 5 3 3
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IV. 3lectronic Systems Division (Continued)

oan SLOCLX GEl WQR 122
49 02704 3 5 3 3

50 03610 3 5 3 3

51 16328 3 5 3 3

52 14529 3 5 3 3

53 293000 5 4 2 3

54 82000 3 3 2 3

55 246000 3 3 2 3

56 492000 3 3 2 3

57 11239 4 2 3 3

58 11935 4 2 3 3

59 68922 4 2 3 3

60 05639 4 2 3 3

61 07222 4 2 3 3

62 18751 4 2 3 3

63 101800 1 3 5 3

64 67200 4 3 5 3

65 54958 5 5 2 3

66 20782 4 5 2 3

67 41299 4 5 2 3

68 46420 3 3 2 3

69 02801 3 3 4 4

70 12000 5 4 4 3

71 106000 4 4 4 3

72 09200 3 3 4 3
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IV. Electronic Systems Division (Continued)

73 16354 3 3 4 3

74 11700 3 3 4 3

75 21352 3 2 4 3

76 41470 3 4 3 3

77 61791 2 3 3 3

78 28960 3 3 4 3

79 54615 3 3 4 3

so 43907 4 3 4 3

81 09601 2 3 4 3

82 14177 3 3 4 3

83 02695 2 3 4 4

84 14531 3 3 4 3

85 74820 5 5 4 4

86 11000 5 5 4 4

87 62319 4 4 3 3

88 31795 4 4 3 3

89 11500 6 4 4 4

90 71600 4 4 4 4

91 21700 4 4 4 4

92 26100 3 3 4 4

93 73100 3 3 4 4

94 87700 5 4 4 4

95 18300 4 4 4 4

96 29500 4 4 4 4
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IV. Electronic System Division (Continued)

21 DELOC CPX R I MOD' TOOL

97 50100 2 2 4 4
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